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Abstract Complex dynamical networks may exhibit graph symmetries. These sym-
metries leave an imprint on network behaviour and statistics. This effect is first
demonstrated in a small opto-electronic network. We then present the general con-
ditions under which network statistics become invariant under the action of network
symmetries. Statistical analyses can help reveal the symmetry group of a network
graph without knowledge of the underlying network model. Finally, results from
numerical experiments are also shown to align along network symmetries.
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1 Introduction

Network symmetries exist in many networks and give essential information about
their structure. The difficult problem of reconstructing the graph of a complex
network by studying its dynamics has been studied before [2, 3]. In this article
we demonstrate a tool that instead of resolving individual network connections,
reconstructs the symmetry group of a network using time-series statistics. This article
details how network symmetries manifest themselves in network behaviour and time-
series statistics and gives methods to infer network symmetries from statistics in the
general case. In this article, unless otherwise stated, we study a dynamical system
as in definition 1. In this article we study networks which contain symmetries.
Definition 2 details the conditions for such a symmetry.

Definition 1 A dynamical network is defined by the dynamics of N nodes, each
represented by state vectors, adhering to the following equation:

Ûxi = Fi(x1(t), ..., xN (t)) for i ∈ {1, ..., N}. (1)

Here, xi are the state vectors of the nodes in the dynamical system and Fi(x1, ..., xN )

represents the functions that give the derivative of each node as a function of all
other nodes.

Definition 2 Adynamical system is defined to have symmetry g if Fg(i)(x1, ..., xN ) =

Fi(xg(1), ..., xg(N )), where g is a permutation g : {1, ..., N} → {1, ..., N}.

A consequence of the above definition of a symmetry of a dynamical system is that
if there is a solution si(t), then sg(i)(t) is also a solution.

This article is organised as follows. In section 2 we discuss an opto-electronic
network experiment which demonstrates symmetries in time-averaged behaviour. In
section 3 we present a theorem stating the conditions required for symmetries in
network dynamics to appear in network statistics. We give a more elaborate example
of the consequences of this theorem in section 4. In section 5 we conclude and
discuss the possibility of using the presented methods to retrieve general network
symmetries.

2 Statistical Symmetries in a Small Opto-Electronic Network

In this section we detail an experiment with a small opto-electronic network that
demonstrates how network graph symmetries affect network behaviour and present
themselves in network statistics.
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2.1 Experimental Setup
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Fig. 1: (a)-Possible connections in net-
work, with self-feedback time delays τf
and coupling time delays τc included. (b)-
Schematic of an opto-electronic node with
connections to neighbours. Red connec-
tions are through optical fibres, whereas
black connections are electronic. Figure
from [1].

A network of four coupled opto-
electronic, time-delayed feedback sys-
tems is used [1]. Each of these sys-
tems, ‘nodes’, depicted in Fig.1, con-
sists of a laser diode which passes a
light signal through an integratedMach-
Zehnder modulator, altering the inten-
sity of the signal with a cos2(x + φ0)
nonlinearity, where x is the normalised
input voltage to the modulator. This sig-
nal is then passed on to other nodes
through optical fibres and returned for
self-feedback.

The two input signals, being the self-
feedback signal, and the inputs from the
other nodes respectively, are measured
in separate photoreceivers. A Digital
Signal Processing board is then used
to apply a feedback and coupling de-
lay, apply a digital filter and amplify
the signal. The signal is then fed back
into the Mach-Zehnder modulator. In
this way, a coupled nonlinear chaotic
oscillator with time delays is produced
incorporating both coupling and self-
feedback time delays. A two-pole dig-
ital Butterworth filter is used to filter
the signal, with a high-pass frequency
of ωH/2π = 100Hz and a low-pass fre-
quency of ωL/2π = 2.5kHz, operating
at a sampling rate of 24 kSamples/s.
Connections between nodes can be con-
trolled by variable fibre-based attenuators.

Equations 2-5 well describe the dynamics of the network. In reality, due to the
digital sampling of the DSP board, the system dynamics is partitioned into discrete
time steps. In these equations, ui represents the state of the digital filter corresponding
to each node, ε the coupling strength (ranging from 0-1), and β the round-trip gain.
Furthermore, τf is the self-feedback time delay of each node, whereas τc is the
coupling time delay, which controls the input delay from other nodes. φ0 represents
the DC offset of the Mach-Zehnder modulator, andωH andωL are the high-pass and
low-pass filter constants respectively. Finally, Ai j is the network connectivity matrix
and nin is the number of input nodes per node.
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Ûui(t) = Eui(t) − Fβ cos(xi(t) + φ0), (2)

xi(t) = G
(
ui(t − τf ) +

ε

nin

∑
j

Ai j(u j(t − τc) − ui(t − τf ))
)
, (3)

where,

E =

[
−(ωL + ωH ) −ωL

ωH 0

]
, F =

[
ωL

0

]
, G =

[
1 0

]
,

τf = τc = 1.9ms, φ0 = π/4, ωH/2π = 100Hz, and ωL/2π = 2.5kHz.

2.2 Method

Trials on two different network configurations were conducted: the bidirectionally
coupled star and chain networks in Fig. 2(a), 2(c). Consecutive runs were done on
each network configuration, where ε, the coupling strength was increased in steps
of 0.025, from 0 to 1. 2-second measurement runs were done using oscilloscopes.
During the first 0.5 seconds, the nodes were allowed to oscillate with only self-
feedback, and no coupling, in order to set them in a random, independent state.
Couplingwas then enabled and the next 0.1 seconds of data discarded. The remaining
1.4 seconds were used for data analysis.

2.3 Results

Root mean square differences between nodes were calculated as a function of ε for
each possible combination of nodes in both networks (

√
〈| |xi − x j | |

2〉 for i < j) and
then plotted in Fig. 2(b), 2(d). As is visible, the star network achieved synchronisation
between outer nodes for high values of coupling, whereas the chain network did not
synchronise in any way, since the difference did not approach zero.

It can be seen in Fig. 2(b) that the RMS differences for node combinations 2-1,
2-3 and 2-4, and 1-3, 3-4 and 4-1 line up for all values of ε. This is due to the
fact that there exist symmetries in the graph permuting these nodes to each other,
since interchanging the ‘arms’ of the star graph does not alter the topology of the
graph. Therefore one would expect that their general behaviour, and so any generic
statistics, such as the one used here, would line up and give equal results. If these
results were not equal, then that would suggest that symmetry had been broken in
the experiment.

Similarly, it can be seen that in the chain network diagram 1-4 and 3-4 line up,
as well as 1-3 and 2-4. This is due to the fact that the reflection symmetry in the
chain graph permutes nodes 1 and 2 to 4 and 3, meaning that they have similar
behaviour, and so one expects RMS12 = RMS43 = RMS34. For the same reason,
RMS13 = RMS24. Combinations 1-4 and 2-3 can not be permuted to any other
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(c) Chain network.
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(d) Chain network.

Fig. 2: (a, b)-Networks used in experimental setup. (c, d)-RMS difference calculated
for each possible node combination as a function of coupling strength ε.

combination of nodes without changing the graph topology, and so they stand alone
and do not cluster. We have now effectively identified the orbits of all two-node
combinations under the action of the symmetry group in this graph.

These results may seem trivial. However, they are not. Many factors exist in this
real-world setup that break the symmetry of the network. The round-trip gain β
varies slightly in the different systems and can not be fixed exactly. The phase of the
Mach-Zehnder modulators may shift slightly from the rest position and often needs
to be recalibrated. Different lasers operate at slightly different intensities. These are
all reasons for why the systems used in this setup are nominally homogeneous, but
in reality only approximately the same. It can be concluded from this that network



6 Ethan T.H.A. van Woerkom, Joseph D. Hart, Thomas E. Murphy and Rajarshi Roy

graph symmetries can robustly present themselves as symmetries in the statistics of
real-world experimental setups where different factors break exact symmetries.

3 Statistical Symmetries in the General Case

The previous section shows that network symmetries can cause symmetries in sta-
tistical data to arise. In this section we will detail which conditions are necessary
for this to happen in the general case. This effort culminates in the ‘Main Theorem’
presented at the end of this section. We make use in the following of a so-called
statistic of shape S(a1, ..., aN ) = H(s1(t), ..., sN (t)). H can be imagined to be any
calculation of the properties of a solution si(t), such as the root mean square of the
first node: H(s1(t), ..., sN (t)) =

√
〈| |s1 | |2〉, or a cross-correlation between two nodes.

First we define when a symmetry is present in a statistic using definition 3.

Definition 3 Define as a statistic a function S(a1, ..., aN ) = H(s1(t), ..., sN (t)) that
when applied to a particular initial condition (a1, ..., aN ), applies a function H to the
corresponding solution of the initial conditions (s1(t), ..., sN (t)). Call a statistic S
invariant under the action of symmetry g when it is averaged over some distribution
of initial conditions p, if:∫

S(x1, ..., xN )p(x1, ..., xN )(dx)n×N =
∫

S(xg(1), ..., xg(N ))p(x1, ..., xN )(dx)n×N .

(4)

In order to prove the main theorem we must first prove the following lemmas 1
and 2.

Lemma 1 (Symmetries in initial conditions continue down the line)
Let φ(x1, ..., xN ) be a function of the variables of a dynamical system with symmetry
g. Examine the initial conditions ci and cg(i), with si(t) and zi(t) as respective
solutions. Then:

• zi(t) = sg(i)(t)
• φ(zg−1(1)(t), ..., zg−1(N )(t)) = φ(s1(t), ..., sN (t))

Proof Due to the symmetry of the system, sg(i)(t) is also a solution. Since sg(i)(t) =
cg(i) = zi(0), it follows from the uniqueness theorem that sg(i)(t) = zi(t) and so,
inserting g−1(i), we get φ(zg−1(1)(t), ..., zg−1(N )(t)) = φ(s1(t), ..., sN (t)). �

Lemma 2 Let ai be the initial conditions for a dynamical systemwith symmetry g and
corresponding solution si(t). Let bi = ag(i) and zi(t) be the corresponding solution
to the initial conditions bi . Define the statistic S(a1, ..., aN ) = H(s1(t), ..., sN (t))
and T(b1, ..., bN ) = H(zg−1(1)(t), ..., zg−1(N )(t)).
Then S(a1, ..., aN ) = T(b1, ..., bN ).
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Proof

T(b1, ..., bN ) = H(zg−1(1)(t), ..., zg−1(N )(t)) (5)
= H(s1(t), ..., sN (t)) = S(a1, ..., aN ).

�

Main Theorem

Let p(x1, ..., xN ) be a distribution over the possible initial conditions. Let statistics
S(a1, ..., aN ) = H(s1(t), ..., sN (t)) andT(b1, ..., bN ) = H(zg−1(1)(t), ..., zg−1(N )(t)). If
p is invariant under the symmetry g, that is, p(x1, ..., xN ) = p(xg(1), ..., xg(N )), then:∫
RN×n

p(x1, ..., xN )S(x1, ..., xN )(dx)N×n =
∫
RN×n

p(x1, ..., xN )T(x1, ..., xN )(dx)N×n.

(6)
In other words, if a network has symmetry g and its initial conditions are invariant
under g, then the statistic over the initial conditions will also be invariant under the
action of g when averaged using distribution p.

Proof ∫
RN×n

p(x1, ..., xN )T(x1, ..., xN )(dx)N×n (7)

=

∫
RN×n

p(yg(1), ..., yg(N ))T(yg(1), ..., yg(N ))(dy)N×n ∗

=

∫
RN×n

p(y1, ..., yN )S(y1, ..., yN )(dy)N×n

=

∫
RN×n

p(x1, ..., xN )S(x1, ..., xN )(dx)N×n.

* Here the change of variables xi = yg(i) has been used, which has |J | = 1. �

This theorem is the main result of this article. It states that if an experiment on a
network with a symmetry g is done in such a way that the choice of initial conditions
for all trials p does not break the symmetry of the experiment, then all statistics which
are averaged over the initial conditions will also be invariant under g. If the system
is ergodic then the conditions can be much more lax: any time-averaged statistic will
be invariant under g when averaged over sufficiently long time-series. In an ergodic
system all symmetries will therefore be present in the data of a single run, instead of
having to require that the statistics are averaged over the intial conditions.
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4 Numerical Results

(a) 8-node opto-electronic network
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Fig. 3: (a)-Network used in simulation trials with nodes grouped into orbits by colour.
(b)-Combined root mean square amplitudes from 100 trials of 2000 timesteps each

.

The results from the previous theoretical section have been demonstrated in
two different, small, opto-electronic networks. The experimental setup is limited to
experiments with at most 4 nodes. Simulations allow the results to be demonstrated
in larger networks, with more control over the circumstances. The 8-node opto-
electronic network from Fig. 3(a) was simulated. Simulation data from 100 trials
with randomised initial conditions were combined. The root mean square amplitude
(
√
〈| |xi | |2〉) of each node was calculated for every trial simulation of the opto-

electronic network, as compared to the root mean square difference in section 2.
This was done to identify the orbits of the nodes of the graph.

The nodes of any graph can be partitioned into distinct orbits Oi . An orbit Oi

is a subset of the nodes of a graph with symmetry group G, where for each node
a, b ∈ Oi , ∃g ∈ G, such that a = g(b), and each orbit is closed under the action of
the G. As is visible in Fig. 3(a), there are 4 orbits {1, 2, 3, 4}, {5, 6}, {7}, and {8}.
Based on the main theorem, if network statistics are averaged over initial conditions
in such a way that the conditions are invariant under the action of any symmetry,
then one would expect these statistics to be invariant under the action of the network
symmetries. Polling a network randomly over many different initial conditions is a
close approximation to a continuous integral as stated in the main theorem, which
is impossible to do in reality. Define a statistic RMSi , which gives the root mean
square of the signal from node i. If this network has symmetry g, then one expects
that RMSi = RMSg(i). This implies that any two nodes in the same orbit will have
the same root mean square. We therefore expect in this numerical experiment to
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see the root mean squares of the separate nodes to cluster along the lines of their
respective orbital partitions as a consequence of the main theorem.

The data were found to converge into distinct groups. As is visible in Fig. 3(b), the
four separate orbits of the graph in Fig. 3(a) can clearly be identified. We therefore
confirm that the prediction of the main theorem holds in this case.

5 Conclusion

The main theorem in this work states that, when sampled under a distribution of
initial conditions which is invariant under a symmetry g, any statistics calculated on
these data must also be invariant under the action of the symmetry g. Symmetric
networks therefore imply symmetric statistics. The conversewas not shown to be true.
Symmetries in time-series statistics are however still strong indicators of symmetries
existing in a network. The work presented in both real and numeric experiments has
shown that this result is indeed robust under ordinary real-world circumstances in
real experiments, where symmetries are necessarily broken by small differences in
the experiment. It has also been shown that the converse also reasonably holds for
small networks. The question is whether the converse generally holds given that
sufficient statistical testing and comparisons are done, and whether this can easily
be extended to larger networks.

Assuming that the presence of network symmetries can be verified with a sim-
ple test, then in theory, the symmetry group of a network can be retrieved from
experimental data. Since the symmetry group of a network with N nodes has up to
N! symmetries, it is unreasonable to check every symmetry. The question therefore
arises how many tests need to be done to retrieve the full symmetry group, and what
the algorithmic complexity is of this calculation. Regardless of the complexity of
identifying the full group, this method can readily identify the orbits under the ac-
tion of the entire network symmetry group, thereby already giving vital information
about the network, and which clusters of synchrony may form [4].
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